Notch receptor-ligand interactions during T cell development, a ligand endocytosis-driven mechanism.

نویسندگان

  • Divya K Shah
  • Juan Carlos Zúñiga-Pflücker
چکیده

Notch signaling plays an important role during the development of different cell types and tissues. The role of Notch signaling in lymphocyte development, in particular in the development and commitment to the T cell lineage, has been the focus of research for many years. Notch signaling is absolutely required during the commitment and early stages of T cell development. Activation of the Notch signaling pathway is initiated by ligand-receptor interactions and appears to require active endocytosis of Notch ligands. Studies addressing the mechanism underlying endocytosis of Notch ligands have helped to identify the main players important and necessary for this process. Here, we review the Notch ligands, and the proposed models of Notch activation by Notch ligand endocytosis, highlighting key molecules involved. In particular, we discuss recent studies on Notch ligands involved in T cell development, current studies aimed at elucidating the relevance of Notch ligand endocytosis during T cell development and the identification of key players necessary for ligand endocytosis in the thymus and during T cell development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: members of the Notch signalling pathway in Drosophila.

Molecular evidence has established that direct heterotypic interactions occur between the Drosophila receptor Notch and the ligands Delta and Serrate, and that homotypic interactions occur between Delta molecules on opposing cell surfaces. Using an aggregation assay developed for Drosophila cultured cells, we have compared the affinities of these interactions. We find that the heterotypic inter...

متن کامل

DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur

Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD),...

متن کامل

Ligand-Independent Traffic of Notch Buffers Activated Armadillo in Drosophila

Notch receptors act as ligand-dependent membrane-tethered transcription factors with a prominent role in binary cell fate decisions during development, which is conserved across species. In addition there is increasing evidence for other functions of Notch, particularly in connection with Wnt signalling: Notch is able to modulate the activity of Armadillo/ss-catenin, the effector of Wnt signall...

متن کامل

Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis.

Notch signaling controls diverse cellular processes critical to development and disease. Cell surface ligands bind Notch on neighboring cells but require endocytosis to activate signaling. The role ligand endocytosis plays in Notch activation has not been established. Here we integrate optical tweezers with cell biological and biochemical methods to test the prevailing model that ligand endocyt...

متن کامل

Ligand endocytosis drives receptor dissociation and activation in the Notch pathway.

Endocytosis of the ligand delta; is required for activation of the receptor Notch during Drosophila development. The Notch extracellular domain (NotchECD) dissociates from the Notch intracellular domain (NotchICD) and is trans-endocytosed into delta;-expressing cells in wild-type imaginal discs. Reduction of dynamin-mediated endocytosis in developing eye and wing imaginal discs reduces Notch di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current topics in microbiology and immunology

دوره 360  شماره 

صفحات  -

تاریخ انتشار 2012